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Abstract
We rigorously study eigenvalues and eigenfunctions (vibration modes) on the
class of self-similar symmetric finitely ramified fractals, which include the
Sierpinski gasket and other 3n-gaskets. We consider the classical Laplacian on
fractals which generalizes the usual one-dimensional second derivative, is the
generator of the self-similar diffusion process, and has possible applications
as the quantum Hamiltonian. We develop a theoretical matrix analysis,
including analysis of singularities, which allows us to compute eigenvalues,
eigenfunctions and their multiplicities exactly. We support our theoretical
analysis by symbolic and numerical computations. Our analysis, in particular,
allows the computation of the spectral zeta function on fractals and the limiting
distribution of eigenvalues (i.e., integrated density of states). We consider such
examples as the level-3 Sierpinski gasket, a fractal 3-tree, and the diamond
fractal.

PACS numbers: 02.30.Sa, 02.20.Bb, 02.50.Ga, 02.60.Lj, 02.70.Hm
Mathematics Subject Classification: 28A80, 31C25, 34B45, 60J45, 94C99

1. Introduction

There is a large body of physics and mathematics literature devoted to analysis on fractals.
A small sample of it, containing many more references, is [3, 8, 18, 22, 53] and [1, 30–
34, 42, 43, 52, 54–57, 59, 61, 62]. For example, tools for the numerical analysis of the
Sierpiński gasket were developed in [12, 24], and fractal antennae were considered in [20, 29,
46, 48]. One of the most recent papers where the random walks on the Sierpiński gasket play
a role is [11]. In most of these works fractals provide examples of irregular or scale-invariant
media.

In this paper we rigorously study eigenvalues and eigenfunctions (vibration modes) on
the class of self-similar fully symmetric finitely ramified fractals. Such studies originated
in [49, 50], where it was observed that on the Sierpiński lattice there are highly localized
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eigenfunctions corresponding to eigenvalues of very high multiplicity. Later the spectrum of
the Laplacian on the Sierpiński gasket was studied in detail in [21]. The main purpose of our
paper is to develop a theoretical matrix analysis, including analysis of singularities, which
allows the exact computation of eigenvalues, eigenfunctions and their multiplicities for a large
class of complex fractals.

We consider the classical Laplacian on fractals, which generalizes the usual one-
dimensional second derivative, is the generator of the self-similar diffusion process (see
[5, 6]), and has possible applications as the quantum Hamiltonian. The latter is especially
relevant because it was the original motivation of [49, 50], and because it is shown in [59] that
the fractals are natural limits of quantum graphs (see [2, 10, 18, 19, 38–40, and references
therein]). Our analysis, in particular, allows the computation of the spectral zeta function on
fractals by the method of [13, 58], which can potentially allow the use of zeta regularization
techniques and their applications (see [17]). We also compute the limiting distribution of
eigenvalues (i.e., integrated density of states), which is a pure point measure (except the case
of the usual one-dimensional interval, which is amenable to classical analysis). This support
has a representation

supp(κ) = JR

⋃
D,

where JR is the Julia set of a rational function, which we compute, and D is a possibly
empty set of isolated points (if D is infinite, it accumulates to JR). Also, our analysis allows
the computation of eigenvalues and eigenfunctions by a highly accurate hierarchical iterative
procedure, which does not involve large matrix calculations1. We concentrate on vibrations
with no constraints or boundary conditions, partially because this is natural if the Laplacian is
interpreted as the generator of the diffusion process or a quantum Hamiltonian, and partially
because the computation for the Dirichlet Laplacian (with zero boundary conditions) follows
exactly the same way and produces similar results, as we demonstrate in the case of level-3
Sierpiński gasket (theorem 5.2 and table 2 in section 5).

Our study is closely related to the analysis of self-similar graphs [35–37, 44, 45, 51,
and references therein], self-similar groups [7, 25–27, 47, 60, and references therein] and the
relation between electrical circuits and Markov chains [9, 15, 16, and references therein].

This paper is organized as follows. In section 2 we give the definition of the finitely
ramified fractals with full symmetry, on which the graphs which we consider are based. In
section 3 we introduce spectral self-similarity, Schur complement and a Dirichlet-to-Neumann
map, and show how the resolvent of the Laplacian can be computed by an iterative procedure.
In section 4 we analyze the singularities of our map and obtain general formulae for eigenvalues
and their multiplicities. We also obtain formulae for corresponding eigenprojectors. In the
subsequent sections we use our general method to analyze the following examples: the level-3
Sierpiński gasket (section 5), a fractal 3-tree (section 6) and the diamond fractal (section 7).

2. Finitely ramified fractals with full symmetry

A compact connected metric space F is called a finitely ramified self-similar set if there are
injective contraction maps

ψ1, . . . , ψm : F → F

such that

F =
m⋃

i=1

ψi(F )

1 see http://www.math.uconn.edu/˜teplyaev/fractals/.
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and for any n and for any two distinct words w,w′ ∈ Wn = {1, . . . , m}n we have

Fw ∩ Fw′ = Vw ∩ Vw′ ,

where Fw = ψw(F ) and Vw = ψw(V0). It is assumed that V0 is a finite set of at least two
points, which often is called the boundary of F. Here for a finite word w = w1 · · · wn ∈ Wn

we denote

ψw = ψw1 ◦ · · · ◦ ψwn
.

We define

Vn =
m⋃

i=1

ψi(Vn−1) =
⋃

w∈Wn

Vw

and call this set the vertices of level or depth n.
There is a natural infinite self-similar sequence of ‘fractal’ finite graphs Gn with vertex

set Vn defined as follows. For each n � 0 and w ∈ Wn we define Gw as a complete graph
with vertices Vw. Then, by definition,

Gn =
⋃

w∈Wn

Gw.

Note that Gn has no loops, but is allowed to have multiple edges, depending on the structure
of the fractal F. The degree of a vertex x in graph Gn is denoted by degn(x). Note that there
need not be any uniform bound on the degree of vertices, see for example the Diamond fractal
in section 7.

The main object of our study are eigenvalues and eigenfunctions on the probabilistic
graph Laplacians �n on Gn, which are defined by

�nf (x) = f (x) − 1

degn(x)

∑
(x,y)∈E(Gn)

f (y),

where E(Gn) denotes the set of edges of the graph Gn. For convenience we denote the matrix
of �n by Mn in the standard basis of functions on Vn.

Our main geometric assumption is that for any permutation σ : V0 → V0 there is an
isometry gσ : F → F that maps any x ∈ V0 into σ(x) and preserves the self-similar structure
of F. This means that there is a map g̃σ : W1 → W1 such that

ψi ◦ gσ = gσ ◦ ψg̃σ (i)

for all i ∈ W1. The group of isometries gσ is denoted by G.
It is well known that the eigenvalues and eigenfunctions of �n describe vibration modes

of so-called cable systems modeled on the graph Gn, however a free floating crystal lattice
would provide the same intuition. They also can be considered as discrete approximations
to eigenvalues and eigenfunctions of a continuous self-similar Laplacian �µ on F. This
continuous self-adjoint Laplacian is the generator of a self-similar diffusion process on F
which can be defined in the standard way in terms of a self-similar resistance (Dirichlet) form
on F, that is for any f in a suitably defined domain Dom �µ of the Neumann Laplacian we
have

E(f, f ) =
∫

F

f �µf dµ,

where µ is the standard suitably normalized self-similar (Hausdorff, Bernoulli) measure on F.
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A G-invariant resistance form E on F is self-similar with energy renormalization factor ρ

if for any f ∈ Dom(E) we have

E(f, f ) = ρ

m∑
i=1

E(fi, fi).

Here we use the notation fw = f ◦ ψw for any w ∈ Wn. Such resistance forms in the case
of p.c.f. fractals were studied in detail in [31]. The finitely ramified case can be studied in a
similar way because of the general results in [32]. In particular, existence and uniqueness, up
to a scalar multiplier, of the local regular self-similar G-invariant resistance form E is shown
in [59]. Moreover, one can show that

E = lim
n→∞ ρ−nEn

where the usual graph energy is

En(f, f ) =
∑

(x,y)∈E(Gn)

(f (x) − f (y))2

and that

(ρm)−n�nf (x)−−−−−→
n→∞ �µf (x)

for any function f for which �µf ∈ C(F) and any x ∈ V∗ = ∪n�0Vn. In addition, one has a
relation

ρm = d

dz
R(0) > 1,

where R(z) is the rational function that appears in the spectral decimation process, and is one
of the most important objects in our study.

The standard and almost trivial example of the self-similar energy and Laplacian in a
finitely ramified situation is the case of F = [0, 1]. In this case we can take m = 2 with
ψ1(x) = 1

2x and ψ2(x) = 1
2x + 1

2 , the self-similar measure µ is the usual Lebesgue measure,
�µf = −f ′′ and

E(f, f ) =
∫ 1

0
(f ′(x))2 dx =

∫ 1

0
−ff ′′ dx =

∫
F

f �µf dµ

for any f ∈ Dom(�µ) = {f : f ′ ∈ L2[0, 1], f ′(0) = f ′(1) = 0}. Then we of course have
ρ = 2 and

4n�nf (x) = 2f (x) − f
(
x − 1

2n

) − f
(
x + 1

2n

)
4−n

−−−−−→
n→∞ − f ′′(x)

for any f ∈ C2[0, 1]. The cases F = [0, 1] with m = 3 and m = 4 are discussed in [4].
Although in general the fractal F is an abstract metric space, in our examples F ⊂ R

2 and
the metric on F is the restriction of the usual Euclidean metric in R

2. Moreover, the isometries
gσ are restrictions of isometries of R

2 that maps F into itself and preserves the self-similar
structure of F. We do not require that contractions ψi be similitudes. One can easily construct
more involved and higher dimensional examples for which our methods apply.

3. Spectral self-similarity, Schur complement and Dirichlet-to-Neumann map

If we have a matrix M given in a block form

M =
[
A B

C D

]
(1)

4
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then its Schur complement is

A − BD−1C. (2)

In our work one of the most important objects is the Schur complement of the matrix M − z

which is defined by

S(z) = A − z − B(D − z)−1C. (3)

Note that we use a convention that M − z denotes M − zI where I is the identity matrix of the
same size as M. Similarly, A − z and D − z denote the matrices A and D minus z times the
identity matrix of the appropriate size.

Our interest in S(z) can be explained as follows. As the initial step in our calculations, we
would like to relate the eigenvalues and eigenvectors of the larger Laplacian matrix M = M1

and the eigenvalues and eigenvectors of a smaller Laplacian matrix M0. In our setup, the
blocks A and D in (1) correspond to outer (boundary) and interior vertices, respectively.

Suppose v is an eigenvector of M which is partitioned into its boundary part v0 and interior
part v′

1. Then the eigenvalue equation

Mv = zv

can be written as[
A B

C D

] [
v0

v′
1

]
= z

[
v0

v′
1

]
(4)

or as two equations

Av0 + Bv′
1 = zv0

Cv0 + Dv′
1 = zv′

1.
(5)

From the second equation we obtain v′
1 = −(D − z)−1Cv0, provided z /∈ σ(D), which

implies

S(z)v0 = 0. (6)

If v0 is also an eigenvector of M0 with an eigenvalue z0, then we would like to relate (6)
with

(M0 − z0)v0 = 0. (7)

According to [45, 56], we can write z0 = R(z) if we solve what is our main equation

S(z) = φ(z)(M0 − R(z)), (8)

where φ(z) and R(z) are scalar (meaning not matrix-valued) rational functions.

Proposition 3.1. For a given fully symmetric self-similar structure on a finitely ramified fractal
F there are unique rational functions φ(z) and R(z) that solve equation (8).

Proof. Clearly S(z) is a matrix-valued rational function. By our main symmetry assumption
in the previous section, for any z the matrix S(z) is a linear combination of the identity matrix
and M0, which implies the proposition. �

Remark 3.2. From the calculations above one can see that S(λ) is the so-called Dirichlet-to-
Neumann map for the Laplacian �1.

In our examples M0 is a matrix that has 1 on the diagonal and − 1
N0−1 off the diagonal.

Therefore we have that

φ(z) = −(N0 − 1)S1,2(z)

5
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and

R(z) = 1 − S1,1(z)

φ(z)
.

Here N0 is the number of boundary vertices, which is the number of points in V0.
From the calculations above we have the following theorem.

Theorem 3.1. Suppose that z is not an eigenvalue of D, and not a zero of φ. Then z is an
eigenvalue of M with an eigenvector v if and only if R(z) is an eigenvalue of M0 with an
eigenvector v0, and v = [

v0

v′
]

where

v′ = −(D − z)−1Cv0.

This implies, in particular, that there is an one-to-one map from the eigenspace of M0

corresponding to R(z) onto the eigenspace of M corresponding to z

v0 
→ v = T (z)v0

where

T (z) =
[

I0

−(D − z)−1C

]
.

Naturally, the map v0 
→ v is called the eigenfunction extension map, and T (z) is called
the eigenfunction extension matrix.

The theorem above suggests the following definition of the so-called exceptional set

E(M0,M) = σ(D) ∪ {z : φ(z) = 0}.
Once we have computed the functions R(z) and φ(z) using the smaller matrices M0 and

M = M1, we can compute the spectrum of much larger matrices Mn by induction using the
following results.

We use notation

Mn =
[
An Bn

Cn Dn

]
for the block decomposition of Mn corresponding to the representation

Vn = Vn−1

⋃
V ′

n,

where V ′
n = Vn\Vn−1.

Theorem 3.2. For all n > 0 we have a relation

Pn−1(Mn − z)−1P ∗
n−1 = 1

φ(z)
(Mn−1 − R(z))−1,

where Pn−1 is defined as the restriction operator from Vn to Vn−1. We often identify Pn−1 with
the orthogonal projection from �2(Vn) onto the subspace of functions with support in Vn−1.

Suppose that zn /∈ E(M0,M). Then zn is an eigenvalue of Mn with an eigenvector vn if
and only if

zn−1 = R(zn)

is an eigenvalue of Mn−1 with an eigenvector vn−1, and vn = [
vn−1

v′
n

]
where

v′
n = −(Dn − zn)

−1Cnvn−1.

In such a situation v′
n is called the continuation of the eigenfunction vn−1 from Vn−1 to Vn\Vn−1.

6
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One can obtain information about the extension of eigenfunctions and eigenprojectors
from Vn−1 to Vn by the following theorem.

Theorem 3.3. Let Pn,zn
be the eigenprojector of Mn corresponding to an eigenvalue

zn /∈ E(M0,M), and Pn−1,zn−1 be the eigenprojector of Mn−1 corresponding to eigenvalue
zn−1 = R(zn). Then

Pn,zn
= 1

φ(zn)
d
dz

R(zn)
Tn(zn)Pn−1,zn−1(Pn−1 − Bn(Dn − zn)

−1P ′
n), (9)

where

Tn(z) = (Pn−1 − (Dn − z)−1Cn)

and P ′
n is defined as the restriction operator from Vn to Vn\Vn−1. We often identify P ′

n with
the orthogonal projection from �2(Vn) onto the subspace of functions that vanish on Vn−1. In
this case P ′

n = In − Pn−1.

Proof. First we will prove the key formula for the proof of these theorems. This formula is
not related to spectral similarity and is a known fact. Essentially, it shows how to find the
inverse of a matrix given in a two-by-two block form. To simplify notation we assume that
n = 1 and M1 = M .

Suppose that matrices D − x and A − x − B(D − x)−1C are invertible. Then M − x is
invertible and

(M − x)−1(D − x)−1 + (P0 − (D − x)−1C)(A− x − B(D − x)−1C)−1(P0 − B(D − x)−1).

(10)

It is enough to prove this formula for x = 0, i.e. to prove

M−1D−1 + (P0 − D−1C)(A − BD−1C)−1(P0 − BD−1) (11)

provided that D and A − BD−1C are invertible.
We have

MD−1 = (P ′
1 + P0)MD−1P ′

1 = P ′
1 + P0MD−1P ′

1

and

P0M(P0 − D−1C) = MP0 − P ′
1MP0 − P0MD−1CP0(A − BD−1C).

Thus

M(D−1P ′
1 + (P0 − D−1C)(A − BD−1C)−1(P0 − BD−1P ′

1))

= P ′
1 + P0MD−1P ′

1 + P0(P0 − BD−1P ′
1) = P ′

1 + P0 = I.

That is what (11) says.
To obtain the proof theorem 3.2, note that (10) implies

(M − x)−1(D − x)−1P ′
1 + (P0 − (D − x)−1C)(φ(x)M0 −φ1(x))−1(P0 − B(D − x)−1P ′

1),

(12)

where φ1(z) = φ(z)R(z). The statements of theorem 3.3 follow if we use the standard spectral
representation

M =
∑

z∈σ(M)

zPz

and pass to the limit as x → z in this formula. �

Remark 3.3. For n = 1 these theorems are also true for the adjacency matrix graph Laplacian.
For n > 1 it is important that we consider probabilistic graph Laplacian, or a multiple of it.
For instance, [14, 55] and related works usually consider the Laplacian, �n, multiplied by 4.

7



J. Phys. A: Math. Theor. 41 (2008) 015101 N Bajorin et al

4. Analysis of the exceptional values

It is not enough to restrict ourself to values of z outside of the exceptional set E(M0,M).
In fact, this set is very interesting because it often contains eigenvalues of high multiplicity,
which in turn often correspond to localized eigenfunctions.

We first formulate a proposition that gives the multiplicities of such eigenvalues, and is
used extensively to analyze examples in the rest of the paper. Then we prove a theorem which
implies the proposition.

We write multn(z) for the multiplicity of z as an eigenvalue of Mn. By definition,
multn(z) = 0 if z is not an eigenvalue. Notation dimn is used for the dimension of �2(Vn)

which is the same as the number of points in Vn.

Proposition 4.1.

(i) If z /∈ E(M0,M), then

multn(z) = multn−1(R(z)), (13)

and every corresponding eigenfunction at depth n is an extension of an eigenfunction at
depth n − 1.

(ii) If z /∈ σ(D), φ(z) = 0 and R(z) has a removable singularity at z, then

multn(z) = dimn−1, (14)

and every corresponding eigenfunction at depth n is localized.
(iii) If z ∈ σ(D), both φ(z) and φ1(z) have poles at z, R(z) has a removable singularity at z,

and d
dz

R(z) �= 0, then

multn(z) = mn−1multD(z) − dimn−1 + multn−1(R(z)), (15)

and every corresponding eigenfunction at depth n vanishes on Vn−1.
(iv) If z ∈ σ(D), but φ(z) and φ1(z) do not have poles at z, and φ(z) �= 0, then

multn(z) = mn−1multD(z) + multn−1(R(z)). (16)

In this case mn−1multD(z) linearly independent eigenfunctions are localized, and
multn−1(R(z)) more linearly independent eigenfunctions are extensions of the
corresponding eigenfunction at depth n − 1.

(v) If z ∈ σ(D), but φ(z) and φ1(z) do not have poles at z, and φ(z) = 0, then

multn(z) = mn−1multD(z) + multn−1(R(z)) + dimn−1 (17)

provided R(z) has a removable singularity at z. In this case there are mn−1multD(z) +
dimn−1 localized and multn−1(R(z)) non-localized corresponding eigenfunctions at
depth n.

(vi) If z ∈ σ(D), both φ(z) and φ1(z) have poles at z, R(z) has a removable singularity at z,
and d

dz
R(z) = 0, then

multn(z) = multn−1(R(z)), (18)

provided there are no corresponding eigenfunctions at depth n that vanish on Vn−1. In
general we have

multn(z) = mn−1multD(z) − dimn−1 +2 multn−1(R(z)). (19)

(vii) If z /∈ σ(D), φ(z) = 0 and R(z) has a pole z, then multn(z) = 0 and z is not an
eigenvalue.

8
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(viii) If z ∈ σ(D), but φ(z) and φ1(z) do not have poles at z, φ(z) = 0, and R(z) has a pole z,
then

multn(z) = mn−1multD(z) (20)

and every corresponding eigenfunction at depth n vanishes on Vn−1.

In the next theorem we establish the relation between eigenprojectors of spectrally similar
operators. Namely, we show how one can find the eigenprojector Pn,z of Mn corresponding
to an eigenvalue z, if the eigenprojector Pn−1,R(z) of Mn−1 corresponding to eigenvalue R(z)

is known.
We state this theorem for n = 1 and M = M1, and the analogous relation holds for any

n � 1. As before, we define φ1(z) = φ(z)R(z).

Theorem 4.1.

(i) In the case of proposition 4.1(i),

Pz = 1

φ(z) d
dz

R(z)
(P0 − (D − z)−1C)P0,R(z)(P0 − B(D − z)−1). (21)

(ii) In the case of proposition 4.1(ii),

Pz = (P0 − (D − z)−1C)(ψ0(z)M0 − ψ1(z))
−1(P0 − B(D − z)−1) (22)

where ψ0(x) = φ(x)/(z − x) and ψ1(x) = φ1(x)/(z − x). This implies, in particular,
that there is an one-to-one map v0 
→ v = v0 − (D − z)−1Cv0 from �2(V0) onto the
eigenspace of M corresponding to z.

(iii) In the case of proposition 4.1(iii), the poles of φ(z) and φ1 are simple and so R(z)

has a removable singularity at z, PzPD,z = Pz and P0Pz = 0, which means that the
corresponding eigenfunctions of M vanish on V0.
Moreover,

rank PD,z − rank Pz = rank(ψ0(z)M0 − ψ1(z)I0) = rank P0,R(z)

where ψ0(x) = φ(x)(z − x) and ψ1(x) = φ1(x)(z − x).
In addition, the following relations hold

Pz = PD,z +
1

ψ0(z)
PD,zC(M0 − R(z))−1(I0 − P0,R(z))BPD,z (23)

and PD,zCP0,R(z) = 0. Note that I0 − P0,R(z) is the projector from �2(V0) onto the space,
where (D − z)−1 is a well defined bounded operator.

(iv) In the case of proposition 4.1(iv),

Pz = PD,z +
1

φ(z) d
dz

R(z)
(P0 − (D − z)−1C)P0,R(z)(P0 − B(D − z)−1) (24)

and the projector PD,z is orthogonal to the second term in the right-hand side of this
formula. In particular, PzPD,z = PD,z.

(v) In the case of proposition 4.1(v), Pz is the sum of the right-hand sides in (22) and (24).
(vi) In the case of proposition 4.1(vi), provided there are no corresponding eigenfunction at

depth n that vanish on Vn−1, we have

Pz = 2

ψ(z) d2

dz2 R(z)
(P0 − (D − z)−1C)P0,R(z)(P0 − B(D − z)−1). (25)

In general, this formula is combined with (23).
(vii) In the case of proposition 4.1(vii) we formally have Pz = 0.

(viii) In the case of proposition 4.1(viii) we have Pz = PD,z.

9
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Proof. Item (i) is the same as theorem 3.3; it is inserted here also for the sake of completeness.
To prove item (ii), we pass to the limit as x → z in formula (12), which can be rewritten

as

(M − x)−1(D − x)−1 +
1

z − x
(P0 − (D − x)−1C)(ψ0(x)M0 − ψ1(x))−1(P0 − B(D − x)−1).

(26)

Then the statements to be proved follow if we pass to the limit as x → z in this formula.
To prove item (iii), we again pass to the limit as x → z in formula (12). We see that

P0Pz �= 0 if and only if

lim
x→z

(x − z)2(ψ0(x)M0 − ψ1(x)I0)
−1 �= 0,

that is only possible if d
dz

R(z) = 0. Therefore P0Pz = 0 in our case. Relation (23) follows
from (12).

Note that

ψ0(z)M0 − ψ1(z)I0 − P0MPD,zMP0

if z ∈ σ(D). Hence rank(ψ0(z)M0 − ψ1(z)I0) = rank(PD,z − Pz). In addition, we have that
ψ0(z)M0 − ψ1(z)I0 is nonpositive.

Also we see that P0(M − z)−1P0 is a bounded operator on �2(V0) and so we have
P0(M − z)−1P0 = lim

x→z
(z − x)(ψ0(x)M0 − ψ1(x)I0)

−1. Hence P0(M − z)−1P0 = 0 if and

only if R(z) has a pole at z or R(z) ∈ ρ(M0). If R(z) has a removable singularity at z then

ψ0(z)
d

dz
R(z)P0(M − z)−1P0 = P 0

R(z).

To prove item (iv), note that the relation PzPD,z = PD,z easily follows from the fact that
φ and φ1 do not have poles. Then, if we restrict everything to the orthogonal complement of
the image of PD,z, we can apply item (i) of this theorem.

Item (v) follows from items (ii) and (iv). The proof of item (vi) is a combination of the
proofs of items (i) and (iii). Items (vii) and (viii) easily follow from (12). �

5. Level-3 Sierpiński gasket

The level-3 Sierpiński gasket is shown in figure 1. It has been used as an example in several
works [6, 28, 55, and references therein]. In particular, the spectrum was computed in the
recent paper [14] independently of our work.

The matrix for the depth-1 Laplacian M1 = M is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 − 1
2 − 1

2 0 0 0 0 0

0 1 0 0 0 − 1
2 − 1

2 0 0 0

0 0 1 0 0 0 0 − 1
2 − 1

2 0

− 1
4 0 0 1 − 1

4 0 0 0 − 1
4 − 1

4

− 1
4 0 0 − 1

4 1 − 1
4 0 0 0 − 1

4

0 − 1
4 0 0 − 1

4 1 − 1
4 0 0 − 1

4

0 − 1
4 0 0 0 − 1

4 1 − 1
4 0 − 1

4

0 0 − 1
4 0 0 0 − 1

4 1 − 1
4 − 1

4

0 0 − 1
4 − 1

4 0 0 0 − 1
4 1 − 1

4

0 0 0 − 1
6 − 1

6 − 1
6 − 1

6 − 1
6 − 1

6 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 1. The level-3 Sierpiński gasket and its V1 network.

and the eigenfunction extension map (D − z)−1C is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−24+109z−132z2+48z3

3(1−6z+4z2)(15−32z+16z2)
−9+7z

3(1−6z+4z2)(15−32z+16z2)
−4+3z

3(−5+34z−4z2+16z3)

−24+109z−132z2+48z3

3(1−6z+4z2)(15−32z+16z2)
−4+3z

3(−5+34z−4z2+16z3)
−9+7z

3(1−6z+4z2)(15−32z+16z2)

−4+3z
3(−5+34z−4z2+16z3)

−24+109z−132z2+48z3

3(1−6z+4z2)(15−32z+16z2)
−9+7z

3(1−6z+4z2)(15−32z+16z2)

−9+7z
3(1−6z+4z2)(15−32z+16z2)

−24+109z−132z2+48z3

3(1−6z+4z2)(15−32z+16z2)
−4+3z

3(−5+34z−4z2+16z3)

−9+7z
3(1−6z+4z2)(15−32z+16z2)

−4+3z
3(−5+34z−4z2+16z3)

−24+109z−132z2+48z3

3(1−6z+4z2)(15−32z+16z2)

−4+3z
3(−5+34z−4z2+16z3)

−9+7z
3(1−6z+4z2)(15−32z+16z2)

−24+109z−132z2+48z3

3(1−6z+4z2)(15−32z+16z2)

− 1
3−18z+12z2 − 1

3−18z+12z2 − 1
3−18z+12z2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Moreover, we compute that

φ(z) = (2z − 3)(6z − 7)

3(4z − 5)(4z − 3)(1 − 6z + 4z2)

and

R(z) = 6z(z − 1)(4z − 5)(4z − 3)

6z − 7
.

The eigenvalues of D, written with multiplicities are

σ(D) = {
3
2 , 1

4 (3 +
√

5), 5
4 , 5

4 , 3
4 , 3

4 , 1
4 (3 −

√
5)

}
.

One can also compute

σ(M) = {
3
2 , 3

2 , 3
2 , 3

2 , 1
4 (3 +

√
2), 1

4 (3 +
√

2), 1, 1
4 (3 −

√
2), 1

4 (3 −
√

2), 0
}
.

We find that φ(z) = 0 has two solutions
{

7
6

}
,
{

3
2

}
. Thus, the exceptional set is

E(M0,M) = {
3
2 , 1

4 (3 +
√

5), 5
4 , 3

4 , 1
4 (3 −

√
5), 7

6

}
.

To begin the analysis of the exceptional values, note that find the poles of R(z) and see if
it is an exceptional value. It is easy to see that 3

4 , 5
4 , 1

4 (3 − √
5) and 1

4 (3 +
√

5) are poles of
φ(z) and so we can use proposition 4.1 (iii) to compute the multiplicities. We obtain

mult1
(

3
4

) = 2 − 3 + 1 = 0, mult2
(

3
4

) = 12 − 10 + 1 = 3,

mult1
(

5
4

) = 2 − 3 + 1 = 0, mult2
(

5
4

) = 12 − 10 + 1 = 3,

mult1
(

3±√
5

4

)
= 1 − 3 + 2 = 0, mult2

(
3±√

5
4

)
= 6 − 10 + 4 = 0.

Note that R
(

3
4

) = R
(

5
4

) = 0 and R
(

3±√
5

4

) = 3
2 . Also, 3

2 is not a pole of φ(z) but φ
(

3
2

) = 0

11
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Figure 2. The graph of R(z) for the level-3 Sierpiński gasket.

Table 1. Ancestor-offspring structure of the eigenvalues on the level-3 Sierpiński gasket.

z ∈ σ(M0) 0 3
2

mult0(z) 1 2

z ∈ σ(M1) 0 1 3
4

5
4

3 ± 5
4

3 ± 2
4

3
2

mult1(z) 1 1 2 2 4

z ∈ σ(M2) 0 1 3
4

5
4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3

2
3
4

4
5

mult2(z) 1 1 1 1 1 1 2 2 2 2 2 2 2 2 4 4 16 3 3

3 ± 2
4

3 ± 5
4

and therefore we use proposition 4.1(v) to compute the multiplicities. We obtain

mult1
(

3
2

) = 1 + 0 + 3 = 4, mult2
(

3
2

) = 6 + 0 + 10 = 16.

The ancestor-offspring structure of the eigenvalues on the level-3 Sierpiński gasket is
shown in table 1. The multiplicity of the ancestor is the same as that of the offspring by
proposition 4.1(i). The empty columns correspond to the exceptional values. If they are
eigenvalues of the appropriate Mn, then the multiplicity is shown in the right-hand part of the
same row.

Theorem 5.1.

(i) For any n � 0 we have that σ(�n) ⊂ ⋃n
m=0 R−m

({
0, 3

2

})
and σ(�1) = {

3
2 , 1

4 (3 ± √
2),

0, 1
}
.

(ii) For n � 0 we have that

σ(�n) = (R−n(0))
⋃ (

R−(n−1)

(
3 ± √

5

4

)) ⋃{
3

2

}
.

12
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Table 2. Ancestor-offspring structure of the Dirichlet (zero boundary conditions) eigenvalues on
the level-3 Sierpiński gasket.

z ∈ σ(M 0
1 ) 3

4
5
4

3
2

mult0
1(z) 2 2 1 1 1

z ∈ σ(M 0
2 ) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3

2
3
4

4
5

mult0
2(z) 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 13 5 5

3 ± 5
4

3 ± 2
4

3 ± 5
4

(iii) For n � 0 we have dimn = 3 + 7
5 (6n − 1).

(iv) For n � 0 we have that multn(0) = multn(1) = 1.

(v) For n � 2 and for z ∈ R−k(1), 0 � k � 2 we have that multn(z) = 1.

(vi) For n � 0 we have that multn
(

3
2

) = 2·6n+8
5 .

(vii) For n � 2 and 0 � k � n − 2 we have for z ∈ R−k

{
3
4 , 5

4

}
that

multn(z) = 3
5 (6n−k−1 − 1).

Note as a special case k = 0 which gives the multiplicities of 3
4 and 5

4 .

(viii) For n � 1 with 0 � k � n − 1 we have that for z ∈ R−k

(
3±√

2
4

)
multn(z) = multn−k−1

(
3
2

) = 1
5 (2 · 6n−k−1 + 8).

(ix) For any n � 1 with 0 � k � n − 1 we have that for z ∈ R−k

(
3±√

5
4

)
multn(z) = 0.

Proof. For this fractal we have σ(�0) = {
0, 3

2

}
with mult0

(
3
2

) = 2 and, for the purposes of
proposition 4.1, m = 6.

Item (i) is obtained above in this section.
Item (ii) follows from the subsequent items.
Item (iii) is straightforward by induction.
Item (iv) follows from proposition 4.1(i) because 0 is a fixed point of R(z) and because

R(1) = 0.
Item (v) easily follows from proposition 4.1(i) and Item (iv).
Item (vi) follows from the previous items and proposition 4.1(v).
Item (vii) follows from proposition 4.1(iii).
Item (viii) follows from proposition 4.1(i).
Item (ix) follows from proposition 4.1(iii), and as a consequence none of these values

appear in the spectrum. �

Corollary 5.1. The normalized limiting distribution of eigenvalues (the integrated density of
states) is a pure point measure κ with the set of atoms{

3

2

} ⋃ ( ∞⋃
m=0

R−m

{
3

4
,

5

4
,

3 ± √
2

4

})
.

13
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Moreover, κ
({

3
2

}) = 2
7 and

κ({z}) = 3
7 6−m−1 if z ∈ R−m

{
3
4 , 5

4

} ;
κ({z}) = 2

7 6−m−1 if z ∈ R−m

{
3±√

2
4

}
.

If one were to consider the situation where the level-3 Sierpiński gasket is bound to fix
substrate at its boundary points, the three corners, so that they do not vibrate at all we have
only those eigenfunctions left that are part of σ(D), that is σ(�1) = σ(D). Starting from this
spectrum we use the exact same procedure to formulate the multiplicities.

Theorem 5.2. For this theorem we assume the Dirichlet boundary conditions. (ii) For any
n � 1 we have that σ(�n) ⊂ ⋃n−1

m=0 R−m

({
3
4 , 5

4 , 3
2 , 3±√

5
4

})
.

(i) For n � 1 we have dimn = 7
5 (6n − 1).

(ii) For n � 1 we have that multn
(

3
2

) = 12·6n−1−7
5 .

(iii) For n � 1 and 0 � k � n − 1 we have for z ∈ R−k

{
3
4 , 5

4

}
that

multn(z) = 3
5 (6n−k−1 + 9).

Note as a special case k = 0 which gives the multiplicities of 3
4 and 5

4 .

(iv) For n � 2, 0 � k � n − 2 we have that for z ∈ R−k

(
3±√

2
4

)
multn(z) = 12 · 6n−k−2 − 7

5
.

(v) For n � 1, 0 � k � n − 1 we have that for z ∈ R−k

(
3±√

5
4

)
multn(z) = 0,

except in the case mult1
(

3±√
5

4

) = 1.

The proof of this theorem goes in the same way as the proof of theorem 5.1. The ancestor-
offspring structure of the Dirichlet eigenvalues on the level-3 Sierpiński gasket is shown in
table 2. Note that in the Dirichlet case the normalized limiting distribution of eigenvalues (the
integrated density of states) is the same as in corollary 5.1.

6. A fractal 3-tree

The fractal tree is a fractal that is approximated by triangles as shown in figure 3, but in the
limit is a topological tree. It appeared as the limit set of the Gupta-Sidki group, see [7, 47, and
references therein].

The depth-1 Laplacian matrix M1 = M is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 − 1
2 0 0 − 1

2 0 0

0 1 0 0 − 1
2 0 0 − 1

2 0

0 0 1 0 0 − 1
2 0 0 − 1

2

− 1
4 0 0 1 − 1

4 − 1
4 − 1

4 0 0

0 − 1
4 0 − 1

4 1 − 1
4 0 − 1

4 0

0 0 − 1
4 − 1

4 − 1
4 1 0 0 − 1

4

− 1
2 0 0 − 1

2 0 0 1 0 0

0 − 1
2 0 0 − 1

2 0 0 1 0

0 0 − 1
2 0 0 − 1

2 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 3. The fractal 3-tree and its V1 network.

and the eigenfunction extension map (D − z)−1C is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5+2z(−7+4z)

9−8z(6+z(−9+4z))

2(−1+z)

(−3+4z)(3+4z(−3+2z))

2(−1+z)

(−3+4z)(3+4z(−3+2z))

2(−1+z)

(−3+4z)(3+4z(−3+2z))

5+2z(−7+4z)

9−8z(6+z(−9+4z))

2(−1+z)

(−3+4z)(3+4z(−3+2z))

2(−1+z)

(−3+4z)(3+4z(−3+2z))

2(−1+z)

(−3+4z)(3+4z(−3+2z))

5+2z(−7+4z)

9−8z(6+z(−9+4z))

−7+8(3−2z)z

(−3+4z)(3+4z(−3+2z))
1

9−8z(6+z(−9+4z))
1

9−8z(6+z(−9+4z))

1
9−8z(6+z(−9+4z))

−7+8(3−2z)z

(−3+4z)(3+4z(−3+2z))
1

9−8z(6+z(−9+4z))

1
9−8z(6+z(−9+4z))

1
9−8z(6+z(−9+4z))

−7+8(3−2z)z

(−3+4z)(3+4z(−3+2z))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From here, we compute that

φ(z) = 3 − 2z

9 − 48z + 72z2 − 32z3

and

R(z) = 4z(z − 1)(4z − 3).

The eigenvalues of D written with multiplicities are

σ(D) = {
3
2 , 3

2 , 1
4 (3 +

√
3), 3

4 , 3
4 , 1

4 (3 −
√

3)
}

and the corresponding eigenvectors are {1, 0,−1,−1, 0, 1}, {1,−1, 0,−1, 1, 0}, { 1−√
3

2 , 1−√
3

2 ,
1−√

3
2 , 1, 1, 1

}
,
{− 1

2 , 0, 1
2 ,−1, 0, 1

}
,
{− 1

2 , 1
2 , 0,−1, 1, 0

}
, and

{
1+

√
3

2 , 1+
√

3
2 , 1+

√
3

2 , 1, 1, 1
}
.

Computing the eigenvalues of M with multiplicities gives

σ(M) = {
3
2 , 3

2 , 3
2 , 3

2 , 3
2 , 1, 1

4 , 1
4 , 0

}
and the corresponding eigenvectors are {0, 0,−1, 0, 0, 0, 0, 0, 1}, {0,−1, 0, 0, 0, 0, 0, 1, 0},
{−1, 0, 0, 0, 0, 0, 1, 0, 0}, {1, 0,−1,−1, 0, 1, 0, 0, 0}, {1,−1, 0, −1, 1, 0, 0, 0, 0}, {1, 1, 1, −1,

−1,−1, 1, 1, 1}, {−1, 0, 1,− 1
2 , 0, 1

2 ,−1, 0, 1
}
,
{−1, 1, 0,− 1

2 , 1
2 , 0,−1, 1, 0

}
, {1, 1, 1, 1, 1,

1, 1, 1, 1}.
The only solution of φ(z) = 0 is 3

2 . As such, the exceptional set is

E(M0,M) = {
3
2 , 3

4 , 1
4 (3 +

√
3), 1

4 (3 −
√

3)
}
.
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Figure 4. The graph of R(z) for the fractal tree.

Table 3. Ancestor-offspring structure of the eigenvalues of the fractal tree.

z ∈ σ(M0) 0 3
2

mult0(z) 1 2

z ∈ σ(M1) 0 1 3
4

5
4

3 ± 5
4

3 ± 2
4

3
2

mult1(z) 1 1 2 2 4

z ∈ σ(M2) 0 1 3
4

5
4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3

2
3
4

4
5

mult2(z) 1 1 1 1 1 1 2 2 2 2 2 2 2 2 4 4 16 3 3

3 ± 2
4

3 ± 5
4

For analysis of exceptional values, one can find R(z) at each exceptional point by

R−1(0) = {
0, 3

4 , 1
}

and R−1
(

3
2

) = {
1
4 , 1

4 (3 −
√

3), 1
4 (3 +

√
3)

}
.

Using proposition 4.1, one can determine the multiplicities of the exceptional values. For the
value 3

2 , which is a zero of φ(z), we use proposition 4.1(v) to find the multiplicities:

mult1
(

3
2

) = 40(2) + 0 + 3 = 5, mult2
(

3
2

) = 41(2) + 0 + 9 = 17.

For the value 3
4 , which is a pole of φ(z), we use proposition 4.1(iii) to find the multiplicities.

mult1
(

3
4

) = 40(2) − 3 + 1 = 0, mult2
(

3
4

) = 41(2) − 9 + 1 = 0.

For the values 1
4 (3 +

√
3) and 1

4 (3 − √
3), which are poles of φ(z), we use proposition 4.1(iii)

to find the multiplicities:

mult1
(

1
4 (3 ±

√
3)

)
= 40(1) − 3 + 2 = 0,

mult2
(

1
4 (3 ±

√
3)

)
= 41(1) − 9 + 5 = 0.

16



J. Phys. A: Math. Theor. 41 (2008) 015101 N Bajorin et al

The ancestor-offspring structure of the eigenvalues of the Fractal Tree is shown in
table 3. As before, the symbol * indicates branches of the inverse function R−1(z) computed
at the ancestor value. The multiplicity of the ancestor equals to that of the offspring by
proposition 4.1(i). The exceptional values are represented by the empty columns. If they are
eigenvalues of the appropriate Mn, then the multiplicity is shown in the right-hand part of the
same row.

Theorem 6.1.

(i) For any n � 0 we have that σ(�n) ⊂ ⋃n
m=0 R−m

({
0, 3

2

}) ⋃ {
3
2

}
and σ(�1) ={

3
2 , 1

4 (3 ± √
3), 3

4

}
.

(ii) For n � 2 we have that

σ(�n) =
{

0,
3

2

} ⋃(
n−1⋃
k=0

R−k

{
1

4
, 1

})
.

And for n = 1 we have σ(�1) = {
0, 1

4 , 1, 3
2

}
.

(iii) For n � 0 we have dimn = 3 + 2(4n − 1).

(iv) For n � 0 we have multn(0) = multn(1) = 1.

(v) For n � 2 with 0 � k � n − 2 we have that if z ∈ R−k(1) then

multn(z) = multn−k(1) = 1.

(vi) For n � 0 we have that

multn
(

3
2

) = 4n + 1.

(vii) For n � 1 with 0 � k � n we have for z ∈ R−k

(
1
4

)
that

multn(z) = multn−k

(
1
4

) = multn−k−1
(

3
2

) = 4n−k−1 + 1.

(viii) For n � 1 we have multn
(

3
4

) = 0.

(ix) For n � 1 with 0 � k � n we have that if z ∈ R−k

(
3±√

3
4

)
then multn(z) = 0.

Proof. For this fractal we have σ(�0) = {
0, 3

2

}
with mult0

(
3
2

) = 2 and, for the purposes of
proposition 4.1, m = 6.

Item (i) is obtained above in this section.
Item (ii) follows from the subsequent items.
Item (iii) is straightforward by induction.
Item (iv) follows from proposition 4.1(i) because 0 is a fixed point of R(z) and because

R(1) = 0.
Item (v) easily follows from proposition 4.1(i) and Item (iv).
Item (vi) follows from the previous items and proposition 4.1(v).
Item (vii) follows from proposition 4.1(i).
Items (viii) and (ix) follow from proposition 4.1(iii), and as a consequence none of these

values appear in the spectrum. �

Corollary 6.1. The normalized limiting distribution of eigenvalues (the integrated density of
states) is a pure point measure κ with the set of atoms{

3

2

} ⋃ ( ∞⋃
m=0

R−m

{
1

4

})
.

Moreover, κ
({

3
2

}) = 1
2 , and κ({z}) = 1

2 4−m−1 if z ∈ R−m

{
1
4

}
.
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x1 x2

x3

x

Figure 5. The diamond fractal and its V1 network.

An analysis of the eigenvalues of the 3-tree with Dirichlet boundary conditions does not
appear to have any physical implications as the choice of the three specific boundary points
of this fractal would not be a natural choice for where a physical object would be attached to
a substrate or further system. It would seem to the authors that a more natural selection of
attachment points would be at many more than just the three boundary points and this would
very much complicate the analysis.

7. Diamond fractal

The diamond fractal is shown in figure 5. The diamond self-similar hierarchical lattice
appeared as an example in several physics works, such as [22]. Recently the critical percolation
on the diamond fractal was analyzed in [23].

We can modify the standard results for the unit interval [0,1], see for instance [4], to
develop the spectral decimation method for the diamond fractal. The matrix of the depth-1
Laplacian M1 = M is

M =

⎛⎜⎜⎜⎜⎝
1 0 − 1

2 − 1
2

0 1 − 1
2 − 1

2

− 1
2 − 1

2 1 0

− 1
2 − 1

2 0 1

⎞⎟⎟⎟⎟⎠
and the eigenfunction extension map is now the square matrix with the same entries

(D − z)−1C = 1

2(z − 1)

(
1 1
1 1

)
while the functions

φ(z) = 1

2(1 − z)

and

R(z) = 2z(2 − z)

are the same as for the unit interval, σ(D) = {1, 1} has multiplicity two, and σ(M) =
{2, 1, 1, 0} with the corresponding eigenvectors {−1,−1, 1, 1}, {−1, 1, 0, 0}, {0, 0,−1, 1},
{1, 1, 1, 1}. The exceptional set is

E(M0,M) = {1}.

18
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Theorem 7.1.

(i) For any n � 0 we have that

σ(�n) =
n⋃

m=0

R−m({0, 2}).

(ii) For any n � 0 we have dimn = 3 + 2(4n − 1).

(iii) For any n � 0 we have multn(0) = multn(2) = 1.

(iv) For any n � 1 and 0 � k � n − 1 we have multn(z) = 4n−k+2
3 if z ∈ R−k(1).

Proof. Item (i) follows from (iii) and (iv).
Item (ii) is obtained by induction.
Item (iii) follows from proposition 4.1(i), and the fact that R(0) = R(2) = 0.
Item (iv): For the analysis of the only exceptional value z = 1, note that it is a pole

of φ(z), R(1) = 2, R(z) has a removable singularity at 1, and d
dz

R(1) = 0. Therefore by
proposition 4.1(vi) we have

multn(1) = 4n−1 · 2 − 2 · 4n−1 + 4

3
+ 2 = 4n + 2

3

for all n � 1. This implies Item (iv). �

Corollary 7.1. The normalized limiting distribution of eigenvalues (the integrated density of
states) is a pure point measure κ with the set of atoms

∞⋃
m=0

R−m{1}

and κ ({z}) = 1
2 4−m if z ∈ R−m{1}.

8. Conclusions

We considered the classical Laplacian on fractals, which generalizes the usual one-dimensional
second derivative, is the generator of the self-similar diffusion process, and has possible
applications as the quantum Hamiltonian. We proved that for a large class of self-similar
fully symmetric finitely ramified fractals one can compute eigenvalues, eigenfunctions and
their multiplicities by matrix analysis, including analysis of singularities. Our analysis, in
particular, allowed the computation of the limiting distribution of eigenvalues (i.e., integrated
density of states), which is a pure point measure (except the case of the usual one-dimensional
interval), and the spectral zeta function of the fractals, which can potentially allow the use of
zeta regularization techniques. As examples we considered the level-3 Sierpinski gasket, a
fractal 3-tree and the diamond fractal.
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B 29 5504–5508

[4] Bajorin N, Chen T, Dagan A, Emmons C, Hussein M, Khalil M, Mody P, Steinhurst B and Teplyaev A 2007
Vibration spectra of symmetric finitely ramified fractals in preparation

[5] Barlow M T 1998 Diffusions on fractals Lectures on Probability Theory and Statistics (Saint-Flour, 1995)
(Lecture Notes in Math. vol 1690) (Berlin: Springer) pp 1–121

[6] Barlow M T and Hambly B M 1997 Transition density estimates for Brownian motion on scale irregular
Sierpinski gaskets Ann. Inst. H. Poincaré Probab. Stat. 33 531–57
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